BARISAN DAN DERET

 Disusun oleh:

 Syarira Hanandhita Putri Ilham

 Kelas XI IPS 3


BARISAN DAN DERET

Barisan merupakan suatu runtutan angka atau bilangan dari kiri ke kanan dengan pola serta aturan tertentu. Barisan berkaitan erat dengan deret. Jika barisan adalah kelompok angka atau bilangan yang berurutan, deret merupakan jumlah dari suku-suku pada barisan. Barisan dan deret terbagi menjadi beberapa macam.

  a) Barisan dan Deret Aritmatika

Barisan aritmetika merupakan barisan bilangan yang memiliki beda atau selisih tetap antara dua suku yang berurutan.

Contoh Barisan Aritmetika:

image article


Rumus untuk menentukan suku ke-n dari barisan aritmetika:

image article

Rumus untuk mencari beda pada barisan aritmetika:

image article

Berbeda dengan barisan, deret merupakan hasil penjumlahan pada barisan aritmetika. Namun, deret tidak selalu menjumlahkan keseluruhan suku dalam suatu barisan. Rumus deret hanya menjumlahkan barisan aritmetikanya hanya sampai suku yang diperintahkan saja.

Contoh deret aritmetika:

2 + 4 + 6 + 8 + 10 + …

24 + 20 + 16 + 12 + …

Rumus jumlah n suku pertama deret aritmetika:

image article


Contoh Soal 1 :

Diketahui sebuah barisan aritmetika 15, 19, 23, 27, 31, … .

a. Tentukan suku ke 25!

b. Tentukan 10 suku pertama!

Pembahasan :

image article

Contoh soal 2 :

Terdapat sebuah barisan bilangan seperti berikut 3, 5, 7, 9, …
Berapakah suku ke-30 dari barisan tersebut?

Pembahasan
Diketahui:
a = 3
b = Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 321
= 5-3
= 2
Ditanyakan: U30?
Jawab:
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 322
= 3 + (30-1)2
= 3 + (29)2
= 3 + 58
= 61

Jadi, suku ke-30 dari barisan aritmetika tersebut adalah 61.

Contoh soal 3 :

Terdapat sebuah barisan aritmetika sebagai berikut 20 + 18 + 16, …
Tentukan berapa jumlah 12 suku pertamanya!

Diketahui:
a = 20
b = 2
Ditanyakan: Sn?
Jawab:
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 316
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 330 = Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 331 (20 + 20 + (12-1)2))
= 6 (40 + 24 – 2)
= 6 (62)
= 372.

Jadi, jumlah 12 suku pertama dari barisan aritmetika tersebut adalah 372.


  b) Barisan dan Deret Geometri

Barisan geometri merupakan barisan bilangan dimana dua suku yang berurutan memiliki perbandinganyang sama. Perbandingan pada barisan geometri disebut sebagai rasio (r).

Contoh barisan geometri:

image article

Rumus untuk menentukan suku ke-n dari barisan geometri:

image article

Rumus untuk mencari rasio pada barisan geometri:

image article

Deret geometri merupakan hasil penjumlahan pada barisan geometri. Rumus deret hanya menjumlahkan suku-suku pada barisan geometri hanya sampai suku yang diperintahkan saja.

Contoh deret geometri:

2 + 4 + 8 + 16 + 32 + …

200 + 100 + 50 + 25 + …

Rumus jumlah n suku pertama deret geometri:

image article

Contoh Soal 1 :

Diketahui sebuah barisan geometri berikut:

3, 12, 48, 192, …

a. Tentukan suku ke-10 dari barisan geometri tersebut!

b. Tentukan jumlah 5 suku pertama dari barisan geometri tersebut!

Pembahasan:

image article

Contoh soal 2 :

Pada sebuah deret geometri diketahui bahwa suku pertamanya adalah 3 dan suku ke-9 adalah 768. Suku ke-7 deret tersebut adalah…

Pembahasan:

Diketahui: a = 3
Barisan dan Deret Geometri - Materi Matematika Kelas 11 344
Ditanya: Barisan dan Deret Geometri - Materi Matematika Kelas 11 345

Jawab:

Sebelum kita mencari nilai dari Barisan dan Deret Geometri - Materi Matematika Kelas 11 346 , kita akan mencari nilai r terlebih dahulu.

Ingat kembali bahwa Barisan dan Deret Geometri - Materi Matematika Kelas 11 347 sehingga  Barisan dan Deret Geometri - Materi Matematika Kelas 11 348 dapat ditulis menjadi

Barisan dan Deret Geometri - Materi Matematika Kelas 11 349
Barisan dan Deret Geometri - Materi Matematika Kelas 11 350
Barisan dan Deret Geometri - Materi Matematika Kelas 11 351
Barisan dan Deret Geometri - Materi Matematika Kelas 11 352
Barisan dan Deret Geometri - Materi Matematika Kelas 11 353
Barisan dan Deret Geometri - Materi Matematika Kelas 11 354

Sehingga,

Barisan dan Deret Geometri - Materi Matematika Kelas 11 355
Barisan dan Deret Geometri - Materi Matematika Kelas 11 356
Barisan dan Deret Geometri - Materi Matematika Kelas 11 357

Jadi, suku ke-7 deret tersebut adalah 192.


  c) Bunga,Penyusutan,Pertumbuhan dan peluruhan

Bunga yaitu selisih antara jumlah uang yang dipinjamkan oleh pemodal dengan jumlah uang yang akan dikembalikan oleh pemakai modal menurut kesepakatan bersama.

Adapun besarnya bunga dipengaruhi oleh: besarnya jumlah uang yang dipinjam, jangka waktu untuk meminjam, dan tingkat suku bunga / persentase. Bunga dibedakan menjadi 2 jenis, yakni bunga Tunggal dan bunga Majemuk.
  • Bunga tunggal

Bunga tunggal yaitu bunga yang dibayar untuk setiap periodenya dengan jumlah yang tetap. Bunga tunggal ini dihitung menurut modal awal.

Rumus bunga tunggal pada akhir periode;

Rumus besarnya modal pada akhir;

Keterangan:

B = bunga

M0 = modal awal

Mt = modal pada akhir periode – t

t = periode

r = tingkat suku bunga (persentase)

  • Bungan majemuk

Bunga majemuk yaitu, bunga yang dihitung menurut jumlah modal yang dipakai ditambahkan dengan akumulasi bunga yang telah terjadi. bunga majemuk ini sering disebut dengan bunga berbunga, bunga majemuk dapat dihitung dengan menggunakan deret geometri.

Misalkan, Modal Sejumlah M0, akan diberlakukan bunga majemuk,dengan tingkat suku bunga i (dalam persentase) per periode waktu. Besarnya modal saat periode ke-t (Mt) bisa dihitung dengan cara:

Sehingga, rumus untuk besar modal pada periode ke-t dengan bunga majemuk yaitu;

keterangan;

Mt = modal pada akhir periode – t

M0 = modal awal

i = tingkat suku bunga

t = periode


Pertumbuhan yaitu pertambahan atau  kenaikan nilai suatu besaran terhadap besaran yang sebelumnya yang umumnya mengikuti pola aritmatika (linier) atau geometri (eksponensial). 

Contoh dari pertumbuhan misalnya perkembangbiakan amoeba dan pertumbuhan penduduk.

Rumus pertumbuhan linear;

Sedangkan rumus pertumbuhan eksponensial;

Keterangan;

Pn = nilai besaran setelah n periode

P0 = nilai besaran pada awal periode

b = tingkat pertumbuhan

n = banyaknya periode pertumbuhan

Contoh soal:

Banyak penduduk kota A setiap tahun meningkat 2% secara eksponensial dari tahun sebelumnya. Tahun 2013 penduduk di kota A sebanyak 150.000 orang. Hitung banyak penduduk pada tahun 2014 dan 2023!

Jawab:

Capture.png

Banyak penduduk pada tahun 2014 (artinya 1 tahun setelah 2013, maka n = 1):

Capture-1.png

Banyak penduduk pada tahun 2023 (n=2023-2013=10):

pertumbuhan


Peluruhan ( penyusutan) yaitu berkurangnya nilai atau penurunan suatu besaran terhadap nilai besaran yang sebelumnya, yang umumnya mengikuti pola aritmatika (linier) atau geometri (eksponensial). Peluruhan misalnya, peluruhan zat radioaktif dan penurunan harga jual mobil.

Rumus peluruhan linear;

Rumus peluruhan eksponensial;

Keterangan;

Pn = nilai besaran setelah n periode

P0 = nilai besaran pada awal periode

b = tingkat peluruhan

n = banyaknya periode pertumbuhan

Contoh soal:

Suatu bahan radioaktif yang semula berukuran 125 gram mengalami reaksi kimia sehingga menyusut 12% dari ukuran sebelumnya setiap 12 jam secara eksponensial. Tentukan ukuran bahan radioaktif tersebut setelah 3 hari!

Jawab:

Capture-4.png

Peluruhan terjadi setiap 12 jam, sehari peluruhan terjadi 2 kali, 3 hari = 72 jam terjadi 6 kali peluruhan.

Capture-5.png

Capture-6.png




DAFTAR PUSTAKA

https://akupintar.id/info-pintar/-/blogs/barisan-deret-aritmetika-dan-geometri-pengertian-rumus-dan-contoh-soal

https://www.zenius.net/blog/barisan-dan-deret-aritmetika

https://www.zenius.net/blog/contoh-soal-barisan-dan-deret-geometri

https://rumushitung.com/2021/04/16/bunga-pertumbuhan-peluruhan-pengertian-jenis-dan-rumusnya/

https://www.ruangguru.com/blog/pertumbuhan-dan-peluruhan-matematika














Komentar

Postingan populer dari blog ini

LUAS SEGI-n BERATURAN, JARI-JARI LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA, GARIS SINGGUNG PERSEKUTUAN LUAR/DALAM LINGKARAN

LIMIT

IDENTITAS TRIGONOMETRI