KOMPOSISI FUNGSI DAN INVERS FUNGSI

 SYARIRA HANANDHITA PUTRI ILHAM

  X IPS 1



KOMPOSISI FUNGSI DAN INVERS FUNGSI BESERTA CONTOH SOALNYA


  • Fungsi Komposisi

Fungsi komposisi merupakan susunan dari beberapa fungsi yang terhubung dan bekerja sama.

Sebagai ilustrasi jika fungsi f dan g adalah mesin yang bekerja beriringan. Fungsi f menerima input berupa (x) yang akan diolah di mesin f dan menghasilkan output berupa f(x). Kemudian f(x) dijadikan input untuk diproses di mesin g sehingga didapat output berupa g(f(x)).

Ilustrasi tersebut jika dibuat dalam fungsi merupakan komposisi g dan f yang dinyatakan dengan g o f sehingga:

(g o f)(x) = g(f(x))

dengan syarat: R_f \cap D_g \not= {\O}.

fungsi komposisi

Komposisi bisa lebih dari dua fungsi jika f:A \rightarrow Bg:B \rightarrow C, dan h:C \rightarrow D, maka h o g o f:A \rightarrow D dan dinyatakan dengan:

(h o g o f)(x) = h(g(f(x)))

Sifat-sifat fungsi komposisi:

Operasi pada fungsi komposisi tidak besifat komutatif (g o f)(x) \not= (f o g)(x)

Operasi bersifat asosiatif: (h o g o f)(x) = (h o(g o f))(x) = ((h o g) o f)(x)

Contoh:

Jika f(x) = 2x + 3 dan (f o g)(x) = 2x^2 + 6x - 7, maka g(x) adalah

(f)(g(x)) = 2x^2 + 6x - 7

2(g(x)) + 3 = 2x^2 + 6x - 7

g(x) = x^2 + 3x - 5


  • Fungsi Invers

Jika fungsi f:A \rightarrow B memiliki relasi dengan fungsi g:B \rightarrow A, maka fungsi g merupakan invers dari f dan ditulis f^{-1} atau  g = f^{-1}. Jika f^{-1} dalam bentuk fungsi, maka f^{-1} disebut fungsi invers.

fungsi invers

Menentukan Invers

Menentukan invers suatu fungsi y = f(x) dapat ditempuh dengan cara berikut:

Ubah persamaan y = f(x) ke dalam bentuk x = f(y)

Gantikan x dengan f^{-1}(y) sehingga f(y) = f^{-1}(y)

Gantikan y dengan x sehingga diperoleh invers berupa f^{-1}

Contoh:

Menentukan invers dari =x^2 - 2x + 4:

y = [x^2 - 2x + 4

y = (x - 1)^2 + 3

(x - 1)^2 = y - 3

x - 1 = \pm \sqrt{y - 3}

x = \pm \sqrt{y -3 + 3}

Sehingga inversnya adalah

f^{-1}(x) =\pm \sqrt{y - 3 + 1} dan bukan merupakan fungsi karena memiliki dua nilai.

Rumus Fungsi Invers

JENIS FUNGSI f(x) f^{-1}(x)
Fungsi linier f(x) = ax + b f^{-1}(x) = \frac{x-b}{a}
Fungsi pecahan linier f(x) =\frac{ax+b}{cx+d}  f^{-1}(x) = \frac{-dx+b}{cx-a}
Fungsi Irrasional f(x) =\sqrt[n]{ax+b}  f^{-1}(x) = \frac{x^n-b }{a}
Fungsi eksponen f(x) = a^x f^{-1}(x) = ^a\log x
Fungsi logaritma f(x) = ^a\log x f^{-1}(x) = a^x

Contoh

JENIS FUNGSI f(x) f^{-1}(x)
Fungsi linier f(x) = 2x+3 f^{-1}(x) = \frac{x-3}{2}
Fungsi pecahan linier f(x) = \frac{2x+3}{4x+5} f^{-1}(x) = \frac{-5x+3}{4x-2}
Fungsi Irrasional f(x) = \sqrt[4]{2x+3} f^{-1}(x) = \frac{x^4-3}{2}
Fungsi eksponen f(x) = 2^x f^{-1}(x) = ^2\log x
Fungsi logaritma f(x) = ^2\log x f^{-1} = 2^x
  • Contoh soal fungsi komposisi dan invers

1. Jika f(x) = \frac{x}{x-1}, x \not= 1 dan g(x) = f(x^2 +1), tentukanlah nilai g(f(x))

Pembahasan

g(x) = f(x^2+1)

g(x) = \frac{(x^2+1)}{(x^2+1)-1} = \frac{x^2+1}{x^2}

g(x) = 1+ \frac{1}{x^2}

Maka:

g(f(x)) = 1 + \frac{1}{(f(x))^2}

g(f(x)) = 1 + \frac{1}{(\frac{x}{x-1})^2} = 1 + (\frac{x-1}{x})^2 = 1 + \frac{x^2-2x+1}{x^2}

g(f(x)) = 2 - \frac{2}{x} + \frac{2}{x} + \frac{1}{x^2}


2. Diketahui f^{-1}(x) = \frac{1}{2}(x - 3), tentukan f(x).

Pembahasan

f^{-1}(x) = \frac{1}{2}(x -3)

f^{-1}(y) = \frac{1}{2}(y -3)

x = \frac{1}{2}(y - 3)

2x = (y - 3)

y = 2x + 3

Maka,

f(x) = 2x + 3


3. Misalkan f(x) = x + 2 untuk x > 0 dan  g(x) = \frac{15}{x} untuk  x > 0. Jika (f^{-1} \circ g^{-1})(x) = 1, tentukan nilai (x)(x).

Pembahasan

f(x) = x + 2 \rightarrow f^{-1}(x) = x - 2

g(x) = \frac{15}{x} \rightarrow g^{-1}(x) = \frac{15}{x}

Maka,

(f^{-1} \circ g^{-1})(x) = 1

f^{-1}(g^{-1}(x)) = 1

f^{-1}(\frac{15}{x}) = 1

 (\frac{15}{x}) - 2 = 1

x = 5



DAFTAR PUSTAKA

https://www.studiobelajar.com/relasi-fungsi-komposisi-invers/


Komentar

Postingan populer dari blog ini

Lucy Guo: Dari Anak Jenius Hingga Miliarder Teknologi

LUAS SEGI-n BERATURAN, JARI-JARI LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA, GARIS SINGGUNG PERSEKUTUAN LUAR/DALAM LINGKARAN

REVIEW SERIAL "DARK": SERIAL NETFLIX TERBAIK YANG UNDERRATED