SOAL KEHIDUPAN SEHARI-HARI DARI PERSAMAAN LINEAR TIGA VARIABEL

 NAMA: SYARIRA HANANDHITA PUTRI ILHAM

KELAS: X IPS 1

NO.ABSEN:34

Contoh soal

1. Ibu Yanti membeli 5 kg telur, 2 kg daging, dan     1 kg udang dengan harga Rp 305.000,00. Ibu     Eka membeli 3 kg telur dan 1 kg daging               dengan harga Rp 131.000,00. Ibu Putu               membeli 3 kg daging dan 2 kg udang dengan     harga Rp 360.000,00. Jika Ibu Aniza membeli     3 kg telur, 1 kg daging, dan 2 kg udang,               berapah harga yang harus ia bayar?

Penyelesaian:
Misal x = harga telur, y = harga daging, dan z = harga udang.

Jumlah harga belanjaan ibu Yanti Rp 305.000 sehingga diperoleh persamaan:

5x + 2y + z = 305000

Jumlah harga belanjaan ibu Eka Rp 131.000 sehingga diperoleh persamaan:

3x + y = 131000

Jumlah harga belanjaan ibu Putu Rp 360.000 sehingga diperoleh persamaan:

3y + 2z = 360000

Jumlah harga yang harus dibayar Ibu Aniza dapat ditulis dengan persamaan = 3x + y + 2z


Diperoleh SPLTV yakni:

5x + 2y + z = 305000 . . . . pers (1)

3x + y = 131000 . . . . pers (2)

3y + 2z = 360000 . . . . pers (3)

 

Adapun metode yang akan dipilih dalam menyelesaikan SPLTV yakni metode subtitusi.

Langkah I

Ubah persamaan 2 yakni:

3x + y = 131000

y = 131000 – 3x . . . .  pers (4)

 

Langkah II

Substitusi persamaan 4 ke persamaan 1, maka:

5x + 2y + z = 305000

5x + 2(131000 – 3x) + z = 305000

5x + 262000 – 6x + z = 305000

– x + z = 43000

z = 43000 + x . . . . persamaan 5

 

Langkah III

Substitusi persamaan 5 ke persamaan 3, maka:

3y + 2z = 360000

3y + 2(43000 + x) = 360000

3y + 86000 + 2x = 360000

2x + 3y = 274000 . . . . pers (6)

 

Langkah IV

Substitusi persamaan 4 ke persamaan 6, maka:

2x + 3y = 274000

2x + 3(131000 – 3x) = 274000

2x + 393000 – 9x = 274000

– 7x = – 119000

x = – 119000/–7

x = 17000

 

Langkah V

Substitusi nilai x ke persamaan 4 dan ke persamaan 5, maka:

y = 131000 – 3x

y = 131000 – 3(17000)

y = 80000

 

z = 43000 + x

z = 43000 + 17000

z = 60000

 

Langkah VI

Jumlah harga yang harus dibayar ibu Aniza yakni:

Ibu Dina = 3x + y + 2z

Ibu Dina = 3(17000) + 80000 + 2(60000)

Ibu Dina = 51000 + 80000 + 120000

Ibu Dina = 251000

Jadi, harga yang harus Ibu Aniza bayar adalah sebesar Rp 251.000,00


2. Pada hari Minggu Wayan, Candra, Agus dan Akbar membeli perlengkapan sekolah di toko buku “Subur”. Wayan membeli 4 buku, 2 bolpoin, dan 3 pensil dengan harga Rp26.000,00. Candra membeli 3 buku, 3 bolpoin, dan 1 pensil dengan harga Rp21.500,00. Agus membeli 3 buku, dan 1 pensil dengan harga Rp12.500,00. Jika Akbar membeli 1 buku, 2 bolpoin dan 2 pensil, berapakah harga yang harus ia bayar?

 

Penyelesaian:

Misalkan a = buku, b = bolpoin, dan c = pensil

 

Persamaan matematis untuk:

Wayan => 4a + 2b + 3c = 26000

Candra => 3a + 3b + c = 21500

Agus => 3a + c = 12500

Akbar => a + 2b + 2c = ?

 

Diperoleh SPLTV yakni:

4a + 2b + 3c = 26000 . . . . pers (1)

3a + 3b + c = 21500 . . . . pers (2)

3a + c = 12500 . . . . pers (3)

 

Adapun metode yang dipilih dalam menyelesaikan SPLTV ini yakni dengan menggunakan metode eliminiasi.

 

Langkah I

Eliminasi variabel b pada persamaan 1 dan 2 yakni:

4a + 2b + 3c = 26000  x3

3a + 3b + c = 21500    x2

 

12a + 6b + 9c = 78000

  6a + 6b + 2c = 43000

-----------------------------   -

  6a +  0  + 7c = 35000

=> 6a + 7c = 35000 . . . pers (4)

 

Langkah II

Eliminiasi variabel c pada persamaan 3 dan 4, yakni:

3a + c = 12500    x7

6a + 7c = 35000  x1

 

21a + 7c = 87500

  6a + 7c = 35000

-----------------------  -

15a          = 52500

a = 3500

 

Langkah III

Substitusi nilai a ke persamaan 4, maka:

6a + 7c = 35000

6(3500) + 7c = 35000

21000 + 7c = 35000

7c = 14000

c = 2000

 

Langkah IV

Substitusi nilai a dan c ke persamaan 2, maka:

3a + 3b + c = 21500

3(3500) + 3b + 2000 = 21500

10500 + 3b + 2000 = 21500

12500 + 3b = 21500

3b = 9000

b = 3000

 

Langkah V

Untuk menentukan harga yang harus Akbar bayar dapat dilakukan dengan memasukan nilai a, b dan c, yakni:

Harga = a + 2b + 2c

Harga = 3500 + 2(3000) + 2(2000)

Harga = 3500 + 6000 + 4000

Harga = 13500

Jadi harga yang harus Akbar bayar adalah sebesar Rp 13.500,00


3. Eka, Dwi, dan Tri adalah 3 bersaudara. Menurut mereka, jumlah usia mereka adalah 28 tahun. Jumlah usia Eka yang ditambah 2 tahun dan usia Dwi yang ditambah 3 tahun sama dengan 5 tahun ditambah tiga kali usia Tri. Dua kali usia Eka dikurangi usia Dwi kemudian ditambah usia Tri sama dengan 13 tahun. Tentukan urutan usia mereka dari yang paling muda!

 

Penyelesaian:

Misal usia Eka = x, Dwi = y, dan Tri = z

 

Persamaan matematis:

x + y + z = 28

(x + 2) + (y + 3) = 5 + 3z => x + y – 3z = 0

2x – y + z = 13

 

Diperoleh SPLTV yakni:

x + y + z = 28 . . . . pers (1)

x + y – 3z = 0 . . . . pers (2)

2x – y + z = 13 . . . . pers (3)

 

Langkah I

Eliminasi x dan y dengan menggunakan persamaan 1 dan 2 yakni:

x + y + z = 28

x + y – 3z = 0

----------------- -

            4z = 28

             z = 7

 

Langkah II

Eliminiasi y dengan menggunakan persamaan 2 dan 3 yakni:

x + y – 3z = 0

2x – y + z = 13

------------------  +

3x – 2z = 13 . . . . pers (4)

 

Langkah III

Substitusi nilai z ke persamaan 4, maka:

3x – 2z = 13

3x – 2(7) = 13

3x – 14 = 13

3x = 27

x = 9

 

Langkah IV

Substitusi nilai x dan z ke persamaan 1, maka:

x + y + z = 28

9 + y + 7 = 28

y + 16 = 28

y = 12

Jadi urutan usia dari usia yang paling muda yaitu 7 tahun, 9 tahun, dan 12 tahun.


4. Sebuah bilangan terdiri atas 3 angka. Jumlah ketiga angkanya sama dengan 16. Jumlah angka pertama dan angka kedua sama dengan angka ketiga dikurangi dua. Nilai bilangan itu sama dengan 21 kali jumlah ketiga angkanya kemudian ditambah dengan 13. Carilah bilangan itu.

Penyelesaian:
Misalkan bilangan itu xyz, x menempati tempat ratusan, y menempati tempat puluhan, dan z menempati tempat satuan. Jadi, nilai bilangan itu 100x + 10y + z. Berdasarkan data pada soal, diperoleh SPLTV sebagai berikut.
x + y + z = 16
x + y = z  2
100x + 10y + z = 21(x + y + z) + 13
Atau bisa kita ubah menjadi bentuk berikut.
x + y + z = 16
x + y  z = 2
79x  11y  20z = 13
Sekarang kita eliminasi variabel y dengan cara berikut.
 Dari persamaan 1 dan 2
x + y + z
=
16

x + y  z
=
2
2z
=
18
z
=
9


 Dari persamaan 1 dan 3
x + y + z
=
16
|× 11|
11x + 11y + 11z
=
176

79x  11y  20z
=
13
|× 1|
79x  11y  20z
=
13
+





90x  9z
=
189
Subtitusikan nilai z = 9 ke persamaan 90x  9z = 189 sehingga diperoleh:
 90x  9z = 189
 90x  9(9) = 189
 90x  81 = 189
 90x = 189 + 81
 90x = 270
 x = 3
Subtitusikan nilai x = 3 dan z = 9 ke persamaan x + y + z = 16 sehingga diperoleh:
 x + y + z = 16
 3 + y + 9 = 16
 y + 12 = 16
 y = 16  12
 y = 4
Jadi, karena nilai x = 3, y = 4 dan z = 9 maka bilangan itu adalah 349.

5. Sebuah kios menjual bermacam-macam buah di antaranya jeruk, salak, dan apel. Seseorang yang membeli 1 kg jeruk, 3 kg salak, dan 2 kg apel harus membayar Rp33.000,00. Orang yang membeli 2 kg jeruk, 1 kg salak, dan 1 kg apel harus membayar Rp23.500,00. Orang yang membeli 1 kg jeruk, 2 kg salak, dan 3 kg apel harus membayar Rp36.500,00. Berapakah harga per kilogram salak, harga per kilogram jeruk, dan harga per kilogram apel?
Penyelesaian:
Misalkan harga per kilogram jeruk x, harga per kilogram salak y, dan harga per kilogram apel z. Berdasarkan persoalan di atas, diperoleh sistem persamaan linear tiga variabel berikut.
x + 3y + 2z = 33.000
2x + y + z = 23.500
x + 2y + 3z = 36.500
Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut.
 Eliminasi variabel x pada persamaan 1 dan 2
x + 3y + 2z
=
33.000
|× 2|
2x + 6y + 4z
=
66.000

2x + y + z
=
23.500
|× 1|
2x + y + z
=
23.500





5y + 3z
=
42.500
 Eliminasi variabel x pada persamaan 2 dan 3
x + 3y + 2z
=
33.000

x + 2y + 3z
=
36.500
 z
=
3.500
y
=
 3.500

Subtitusikan y = z  3.500 ke persamaam 5y + 3z = 42.500 sehingga diperoleh:
 5y + 3z = 42.500
 5(z  3.500) + 3z = 42.500
 5z  17.500 + 3z = 42.500
 8z  17.500 = 42.500
 8z = 42.500 + 17.500
 8z = 42.500 + 17.500
 8z = 60.000
 z = 7.500
Subtitusikan nilai z = 7.500 ke persamaan y = z  3.500 sehingga diperoleh nilai y sebagai berikut.
 y = z  3.500
 y = 7.500  3.500
 y = 4.000
Terakhir subtitusikan nilai y = 4.000 dan nilai z = 7.500 ke persamaan x + 3y + 2z = 33.000 sehingga diperoleh nilai x sebagai berikut.
 x + 3y + 2z = 33.000
 x + 3(4.000) + 2(7.500) = 33.000
 x + 12.000 + 15.000 = 33.000
 x + 27.000 = 33.000
 x = 33.000  27.000
 x = 6.000
Dengan demikian, harga 1 kg jeruk adalah Rp6.000,00; harga 1 kg salak adalah Rp4.000,00; dan harga 1 kg apel adalah Rp7.500,00.

6. Diketahui tiga bilangan a, b, dan c. Rata-rata dari ketiga bilangan itu sama dengan 16. Bilangan kedua ditambah 20 sama dengan jumlah bilangan lainnya. Bilangan ketiga sama dengan jumlah bilangan yang lain dikurang empat. Carilah bilangan-bilangan itu.
Penyelesaian:
Ketiga bilangan adalah a, b, dan c. Ketentuan soal adalah sebagai berikut:
 Rata-rata ketiga bilangan sama dengan 16 berarti:
(a + b + c)/3 = 16
Apabila kedua ruas kita kalikan 3 maka:
a + b + c = 48
 Bilangan kedua ditambah 20 sama dengan jumlah bilangan lain berarti:
b + 20 = a + c
atau bisa kita tuliskan sebagai berikut.
 b + c = 20
 Bilangan ketiga sama dengan jumlah bilangan lain dikurang 4 berarti:
c = a + b  4
atau bisa kita tuliskan sebagai berikut.
a + b  c = 4
Sampai sini kita peroleh SPLTV sebagai berikut.
a + b + c = 48
 b + c = 20
a + b  c = 4
Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut.
 Eliminasi variabel a pada persamaan 1 dan 2
a + b + c
=
48

 b + c
=
20
2b
=
28
b
=
14

 Eliminasi variabel a pada persamaan 1 dan 3
a + b + c
=
48

a + b  c
=
4
2c
=
44
c
=
22

Subtitusikan nilai b = 14 dan nilai c = 22 ke persamaan a + b  c = 4 sehingga diperoleh nilai a yaitu sebagai berikut.
 a + b  c = 4
 a + 14  22 = 4
 a  8 = 4
 a = 4 + 8
 a = 12
Jadi, ketiga bilangan tersebut berturut-turut adalah 12, 14, dan 22.

7. Bentuk kuadrat px2 + qx + r mempunyai nilai 1 untuk x = 0, mempunyai nilai 6 untuk x = 1 dan mempunyai nilai 2 untuk x = 1. Carilah nilai p, q, dan r.
Penyelesaian:
Fungsi kuadrat dalam x dituliskan sebagai berikut.
f(x) = px2 + qx + r
 Untuk nilai x = 0 maka f(x) = 1 maka:
f(0) = p(0)2 + q(0) + r
1 = r
 Untuk nilai x = 1 maka f(x) = 6 maka:
f(1) = p(1)2 + q(1) + r
6 = p + q + r
Masukkan nilai r = 1 ke persamaan 6 = p + q = r sehingga diperoleh:
 6 = p + q + r
 6 = p + q + 1
 p + q = 5
 p = 5  q
 Untuk nilai x = 1 maka f(x) = 2 maka:
f(0) = p(1)2 + q(1) + r
2 = p  q + r
Subtitusikan persamaan nilai r = 1 dan persamaan p = 5  q ke persamaan 2 = p  q + r sehingga diperoleh:
 2 = p  q + r
 2 = (5  q)  q + 1
 2 = 6  2q
 2q = 6  2
 2q = 4
 q = 2
Terakhir, subtitusikan nilai q = 2 dan nilai r = 1 ke persamaan 2 = p  q + r sehingga kita peroleh nilai p sebagai berikut.
 2 = p  q + r
 2 = p  2 + 1
 2 = p  1
 p = 2 + 1
 p = 3
Jadi, nilai p, q, dan r berturut-turut adalah 3, 2, dan 1.

DAFTAR PUSTAKA:
https://mafia.mafiaol.com/2020/10/contoh-soal-cerita-persamaan-linear-tiga-variabel-dan-penyelesaiannya.html?m=1
https://blogmipa-matematika.blogspot.com/2017/12/soal-cerita-SPLTV.html?m=0





 










 

Komentar

Postingan populer dari blog ini

LUAS SEGI-n BERATURAN, JARI-JARI LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA, GARIS SINGGUNG PERSEKUTUAN LUAR/DALAM LINGKARAN

LIMIT

IDENTITAS TRIGONOMETRI